Camera input is not recognized!

Solution - Factoring multivariable polynomials

2(m2+4n2)(m22n2)
2*(m^2+4n^2)*(m^2-2n^2)

Step by Step Solution

Step  1  :

Equation at the end of step  1  :

  ((2•(m4))+((4•(m2))•(n2)))-24n4

Step  2  :

Equation at the end of step  2  :

  ((2 • (m4)) +  (22m2 • n2)) -  24n4

Step  3  :

Equation at the end of step  3  :

  (2m4 +  22m2n2) -  24n4

Step  4  :

Step  5  :

Pulling out like terms :

 5.1     Pull out like factors :

   2m4 + 4m2n2 - 16n4  =   2 • (m4 + 2m2n2 - 8n4) 

Trying to factor a multi variable polynomial :

 5.2    Factoring    m4 + 2m2n2 - 8n4 

Try to factor this multi-variable trinomial using trial and error 

 
Found a factorization  :  (m2 + 4n2)•(m2 - 2n2)

Trying to factor as a Difference of Squares :

 5.3      Factoring:  m2-2n2 

Theory : A difference of two perfect squares,  A2 - B2  can be factored into  (A+B) • (A-B)

Proof :  (A+B) • (A-B) =
         A2 - AB + BA - B2 =
         A2 - AB + AB - B2 =
         A2 - B2

Note :  AB = BA is the commutative property of multiplication.

Note :  - AB + AB equals zero and is therefore eliminated from the expression.

Check : 2 is not a square !!

Ruling : Binomial can not be factored as the difference of two perfect squares.

Final result :

  2 • (m2 + 4n2) • (m2 - 2n2)

Why learn this

Latest Related Drills Solved